
A Dynamic Testing Complexity Metric�

Je�rey Voasy

Mail Stop 478

NASA-Langley Research Center

Hampton, VA 23665

Abstract: This paper introduces a dynamic metric that is based on the estimated ability

of a program to withstand the e�ects of injected \semantic mutants" during execution by
computing the same function as if the semantic mutants had not been injected. Semantic
mutants include: (1) syntactic mutants injected into an executing program and (2) randomly
selected values injected into an executing program's internal states. The metric is a function
of a program, the method used for injecting these two types of mutants, and the program's

input distribution; this metric is found through dynamic executions of the program. A pro-
gram's ability to withstand the e�ects of injected semantic mutants by computing the same
function when executed is then used as a tool for predicting the di�culty that will be incurred
during random testing to reveal the existence of faults, i.e., the metric suggests the likelihood
that a program will expose the existence of faults during random testing assuming faults were

to exist. If the metric is applied to a module rather than to a program, the metric can be
used to guide the allocation of testing resources among a program's modules. In this man-
ner the metric acts as a white-box testing tool for determining where to concentrate testing
resources.

Index Terms: Revealing ability, random testing, input distribution, program, fault,

failure.

�Research supported by a National Research Council NASA-Langley Resident Research Associateship.

An earlier version of this paper was presented at the 1991 Annual Oregon Workshop on Software

Metrics.
yJe�rey Voas is working as a National Research Council Resident Research Associate at the National

Aeronautics and Space Administration's Langley Research Center. His research interests include software

testability, data state error propagation, debugging, and design techniques for improving software testability.

Voas received a BS in computer engineering from Tulane University and a MS and PhD in computer science

from the College of William and Mary.

1

1 ntro ction

Software metrics are simply software characteristics that can be quanti�ed. Over 90 di�erent

metrics are available in software engineering [?], each existing to reveal a di�erent type of

information about the state of the software. For instance, the lines of code metric can suggest

to a project manager the syntactic productivity of his programmers over some time interval.

cCabe's cyclomatic complexity metric [?] can suggest the syntactic complexity of the

code to a tester performing coverage-based testing [?]. Both of these metrics are quanti�ed

statically as are most metrics that measure syntactic software complexity [?].

This paper describes a dynamic metric that measures semantic software complexity; in

order for this metric to be quanti�ed, the program must be executed. The dynamic software

metric that is the focus of this paper is termed \revealing ability." Revealing ability predicts

a program's ability to allow faults to be undetected during dynamic random software testing.

Software testing can generally be divided into dynamic software testing and symbolic

software testing. Symbolic software testing uses symbolic representations for input values; it

selects a path and creates expressions for the computation of the selected path in terms of

the symbolic values [?]. The symbolic expressions can then be compared against equations

representing the correct computational expressions for that path. ynamic software testing

executes the program on actual inputs that are chosen in one of two ways: (1) either the

code is considered as the inputs are chosen (these are termed white-box input selection

techniques), or (2) the code is not considered as the inputs are chosen (these are termed

black-box input selection techniques). fter the inputs are selected, the program is then

dynamically executed on the inputs and the resulting outputs are compared against the

correct outputs that are assumed to be available. For this metric, regardless of whether the

inputs are chosen in a white-box or black-box manner, it is assumed that they will be chosen

at random. Random input selection techniques can be implemented using a pseudo-random

number generator such as the ehmer random number generator with a �xed initial seed

described in [?].

Since the revealing abilitymetric is a dynamic metric, it requires inputs. Revealing ability

assumes that the inputs will be chosen randomly from the operational distribution, which is

assumed will be the input distribution used during random testing. owever it cannot be

assumed that the operational distribution will always be known. hen unknown, the input

distribution used will be a uniform distribution over all elements of the input domain. In

general, substituting input distributions will bias this metric, and research is continuing into

how great such a bias will be.

The revealing ability metric is a tool for deciding whether faults can remain undetected

2

during dynamic random software testing. (From this point on, this is termed random testing

for short). The information revealing ability contains is particularly important to critical

software, since the existence of undetected faults poses the threat of a loss-of-life [?]. Since

it is likely that critical software will already have such a high reliability that it will not fail

at the time when this metric would normally be quanti�ed (towards the end of testing and

validation), the revealing ability metric provides additional insight into determining how sig-

ni�cant the absence of observed failures is. If the revealing ability metric suggests that faults

can easily remain undetected, observing no failure is less signi�cant; if the revealing ability

metric suggests that faults can easily be detected, observing no failure is more signi�cant.

Two di�erent programs can compute the same function with the same input distribution

and produce di�erent revealing abilities. program has high revealing ability if it is believed

to readily reveals faults during random testing; a program with low revealing ability is be-

lieved to be unlikely to reveal faults during random testing. igh revealing ability suggests

that a reasonable number of random inputs will expose faults assuming faults were to exist.

ow revealing ability is a dangerous circumstance because considerable amounts of random

testing may not produce failures even though faults exist.

ot only can the revealing ability metric be quanti�ed for a program, but the revealing

ability of a module or an individual program location can also be quanti�ed. program

location is what orel [?] terms a single instruction: an assignment, input statement, output

statement, and the <expression part of an i or ile statement. This paper concentrates

on �nding the revealing abilities of program locations. The revealing ability of a module

or program is derived from the revealing abilities of the individual program locations that

compose it.

The remainder of this paper is organized as follows: Section 2 describes the role of mu-

tation in the revealing ability metric. Section describes a technique termed \propagation,

infection, and execution analysis"|this is a technique that produces information that is

needed in order to quantify revealing ability. Section 4 contains the revealing ability formu-

lae.

o o t tion in in i it

The revealing ability of a program location is a function of three characteristics that are

dynamically estimated for the program location. These characteristics are: (1) how often

inputs execute the program location, (2) how often injected syntactic changes to the program

location cause discernible changes in the resulting internal program states, and () how often

an injected change to a data value in a program state of an executing program is discernible

in the program output. Thus static and dynamic mutation of a program play a large role in

the dynamic revealing ability metric.

For dynamic mutation to occur, it is necessary to sample the program states that occur

between consecutively executed program locations. hether program locations are con-

sidered as occurring consecutively is calculated dynamically|thus for di�erent inputs, the

location that is immediately executed after some location l may vary according to the input

being used. program state is set of mappings of all statically declared and dynamically

allocated variables to their current values during an execution using a particular program

input|program states are sampled only between consecutively executed program locations.

In addition to these variables, the program counter and its current value are also included

in a data state set. For example, if a particular input causes �ve program locations to be

executed and each program location is executed once, then there are four program states that

could be sampled during that execution. If a particular input causes 10 program locations

to be executed and each location is executed times, then there are 49 program states that

could be sampled. In general, if the total number of location executions is n, then there are

n� 1 program states.

utating source program constructs statically is common in several software engineering

techniques, e.g., fault-seeding and mutation testing. In fault-seeding, the goal is to seed

mutants into a program and see how many mutants can be caught by a �xed set of inputs.

If for example, half of the mutants are caught, and that set of inputs has already revealed

the existence of 10 faults in the program, then it is predicted that 10 faults still remain

in the program. In mutation testing [?, ?], mutants are injected into multiple copies of a

program to �nd a set of inputs that can distinguish all of the mutated versions from the

original program. The resulting set of inputs is termed mutation adequate, and these inputs

are then used during software testing.

ike fault-seeding and mutation testing, this technique also mutates source program

constructs creating what are termed syntactic mutants. owever the information that is

collected from the syntactic mutants is di�erent than the information collected by fault-

seeding and mutation testing. nother distinction is that this techniquemutates dynamically

created program states|these are termed program state mutants. rogram state mutants are

program states that have been altered according to speci�c rules|these rules are discussed

in Section .1.

4

ro tion, n ction, n c tion n -

i c ni

The technique used for quantifying the characteristics needed for the revealing ability of a

program location is termed propagation, infection, and execution analysis [?, ?]. ropaga-

tion, infection, and execution analysis is a dynamic white-box analysis technique. ith these

characteristics for a particular program location, a prediction for whether random testing

of the program location will reveal faults (assuming faults were to exist) is provided. nd

with these characteristics for every program location, a prediction of whether random testing

of the entire program will reveal faults (assuming faults were to exist) can also be derived.

Thus a way of determining the semantic testability of the program is available.

ropagation, infection, and execution analysis is a technique that is based on the three

necessary and su cient conditions for software to fail. These conditions are:

1. fault must be executed,

2. The fault must a�ect the state of the program in a manner di�erent than what the

state of the program would have been had the fault not existed, and

. The erroneous program state must propagate to an output state.

These three conditions that are necessary for a fault to cause a software failure are simulated

by the processes of propagation, infection, and execution analysis. ropagation, infection,

and execution analysis estimates: (1) the probability that a program location is executed

according to some program input distribution, (2) the probability that an injected syntactic

mutant will produce a discernible di�erence in the resulting program state, and () the

probability that injected program state mutants will produce a discernible di�erence in the

program's output.

In order to estimate these three probabilities, propagation, infection, and execution anal-

ysis is composed of three subtechniques|each technique is responsible for estimating one

probability. These three techniques involve signi�cant computational resources. nlike soft-

ware testing, however, these techniques do not require an oracle to determine a correct

output. Instead, propagation analysis and infection analysis detects changes between the

original program's behavior and the behavior of the program receiving injected semantic

mutants. This is done without determining correctness. This allows propagation, infection,

and execution analysis to be automated, however there are feasibility problems that arise

in building an automated system. These di culties are theoretically unsolvable, however

inelegant partial solutions can be applied to lessen the theoretical di culties, which still

allow for an automated system [?, ?].

In order for the propagation, infection, and execution analysis technique to have practical

application, the current program is assumed to be close to its correct syntactic and semantic

form. This is similar to the competent programmer hypothesis [?]. ithout this requirement,

each major syntactic program modi�cation would require propagation, infection, and execu-

tion analysis to be reperformed. This is not a limitation of the technique, but a limitation

that must be imposed to make the technique practical, since propagation, infection, and

execution analysis is expensive to perform.

.

ropagation analysis estimates the probability that an altered program state will propagate

it's e�ect to the program output. To make this estimate, a program state is perturbed (or

altered) by changing the value of one live variable in the program state. variable is

considered live if the variable has any potential of a�ecting an output computation. The set

of variables that are live is determined statically using data- ow analysis [?]. fter injecting

a program state mutant, program execution resumes until termination (assuming no in�nite

loop occurs); the following algorithm tells how to handle the suspected occurrence of an

in�nite loop caused by an injected program state mutant.

This process of �rst perturbing a live variable's value and then resuming execution is

repeated many times. This repeated process yields the number of instances out of n

attempts where perturbing a live variable at some program location l made a discernible

e�ect in the program's output. The value
n
is a rough estimate of the probability that an

altered value to variable (at program location l) a�ects the program output.

The probability that live variable , whose value is perturbed at program location l,

a�ects program output is denoted by ; . The estimate of this probability is termed a

propagation estimate; ^
; denotes this probability estimate and is computed according to

the following algorithm:

1. Set variable c nt r to 0.

2. Randomly select a program state from the space of program states that occur imme-

diately after program location l|the space of program states used in this algorithm

must be a function of the same input distribution to the program that is used during

execution analysis (See Section .).

. erturb the value of live variable in this program state, and execute the code that

succeeds program location l on both the perturbed and original program states. There

are issues that must be addressed concerning how to perturb a value in a data state,

but they are out of the scope of this paper. These issues are addressed in [?, ?].

4. If a di�erent result occurs in the program output between the perturbed program

state and the original program state, increment c nt r ; also, set a time limit for

termination of the program executing on the perturbed data state, and if execution is

not �nished in that time interval, increment c nt r .

. Repeat algorithm steps 2-4 n times.

. ivide c nt r by n yielding ^
; .

propagation estimate is a function of the program location, the live variable, the space of

program states occurring after the program location, the method used to perturb a value,

and the code that is potentially executed after the program location. ropagation analysis

�nds a propagation estimate for each member of the set of live variables at each program

location. This produces a large set of propagation estimates|one propagation estimate per

live variable per program location. For example, if propagation analysis is performed on a

program with 10 program locations and are live variables at each program location, 0

propagation estimates would result.

propagation estimate can be thought of as an estimate of the e�ect that a live variable

at a program location has on the program's output. For instance, if some live variable's

value can be changed at some program location l without producing any evidence of this

change in the program's output, i.e., a tiny propagation estimate is produced, then con�dence

can be gained that this variable at this program location has little e�ect on the program's

computation. It may be that this variable has a greater e�ect on the program's behavior at

some other program location.

rogram state mutants are created using perturbation functions. perturbation function

is a tool that takes in a value of a live variable and changes it according to certain parame-

ters. erturbation functions can simulate a wide variety of program state mutants by using

functions that are based on random distributions. For example, ni rm . c . c

is a perturbation function that produces a uniformly distributed random value between half

and one-and-a-half times the current value of the live variable, c .

The perturbation functions used thus far in this research only perturb data values, how-

ever research is ongoing in creating perturbation functions to perturb data structures and

the program counter. Since faults can create incorrect data structures as well as incorrect

data values, future research will suggest perturbation functions that perturb data structures

and the program counter.

.

Infection analysis estimates the probability that a syntactic mutant injected into a program

location will will cause a discernible di�erence in the program state that results when the

mutant is executed. In other words, will a particular syntactic mutant of a program location

produce a value in the resulting program state that is visibly di�erent than the value that

is produced by the original program location

Infection analysis is a technique that is similar to weak mutation testing [?]; what is

di�erent in these techniques is the information collected. In infection analysis, a set of

syntactic mutants is created for each program location. restriction is placed on each

syntactic mutant|the syntactic mutant must also be semantically di�erent for at least one

input to the program. This means that there must be at least one program input such that

when the syntactic mutant is executed, the resulting program state is di�erent.

ithout this requirement, a syntactic mutant could be used during infection analysis

that is not discernible when the resulting program states are compared. In this situation,

such a syntactic mutant is functionally equivalent to the original program location for all

inputs given a particular input domain. For the revealing ability metric, such a situation is

unacceptable, because it suggests that the program location has a greater ability to protect

faults from detection, which cannot be justi�ed from such a mutant. For example, x : x

would not qualify as a syntactic mutant of x : x.

Infection analysis creates a set of syntactic mutants for each program location. fter

creating a program location's mutant set, each syntactic mutant and original location is

executed with a data state that is selected at random from the space of data states that

occurs before the location. This process is repeated; thus many data states are selected.

This repeated process yields the number of instances out of n attempts where injected

syntactic mutant discernibly a�ects the program state in a manner that is di�erent than

the original location. The value
n

is a rough estimate of the probability that injected

syntactic mutant into program location l discernibly a�ects the program state. The goal

is to determine the e�ect,
n
, for each of these syntactic mutants.

The probability that syntactic mutant a�ects the program state di�erently than the

original location does is denoted by ; . n estimate of this probability is termed an infection

estimate and is denoted by ^
; ; ^ ; is computed according to the following algorithm:

1. Set variable c nt in to 0.

2. Create a syntactic mutant for program location l denoted as .

. resent the original program location l and the syntactic mutant with a randomly

selected program state from the space of program states that occur immediately prior

to program location l, and execute both program locations in parallel (the space of

program states used here is expected to be a function of the same program input

distribution that is used by execution analysis in Section .).

4. Compare the resulting program states and increment c nt in when the result com-

puted by does not equal the result computed by l for this particular program state.

. Repeat algorithm steps and 4 n times.

. ivide c nt in by n yielding ^
; .

n infection estimate is a function of the program location, the syntactic mutant used, and

the space of program states that occur immediately before the program location.

The set of syntactic mutants created at a program location should be representative of the

class of faults that is expected could occur at the program location. fault is termed \com-

mon" if it is one that might occur there. nfortunately this is a subjective determination

and research is continuing into creating syntactic mutants. set of syntactic mutants used

at a program location is considered non-representative if all its members have signi�cantly

higher or lower infection estimates than a common fault at that program location.

The choice of which mutants to use determines the bene�t gained from infection analysis.

nd although there are certain instances of syntactic mutants that are fairly easy to �nd

that would probably satisfy most user's de�nition of representative, in general, the cost of

determining whether a particular mutant is representative will be prohibitive. Therefore in

practice the utopian idea of generating syntactic mutants that behave as faults that might

occur is abandoned, and will instead generate mutants according to speci�c rules.

The rules use in this research for generating syntactic mutants are limited to syntactic

mutants for arithmetic expressions and predicates. For arithmetic expressions, the syntac-

tic mutants considered in this research are limited to the following changes to a program

location: (1) a wrong variable substitution, (2) a variable substituted for a constant, () a

constant substituted for a variable, (4) expression omission, () a variable that should have

been replaced by a polynomial of degree , and () a wrong operator. For predicates, the syn-

tactic mutants considered at a predicate program location are limited to: (1) substituting a

wrong variable, (2) exchanging and and r, and () substituting a wrong equality inequality

operator.

9

.

xecution analysis is the most straightforward and least computationally expensive of the

three techniques. xecution analysis requires a program input distribution. xecution anal-

ysis executes the code with randomly selected inputs consistent with the input distribution

and records which program locations are executed by each input. It is preferred that the

input distribution used during execution analysis will be the operational distribution, since

this is the distribution that is expected to be used during program testing. It is required that

the input distribution used during execution analysis will be the same distribution that is

used to create the internal program state spaces used by infection analysis and propagation

analysis.

The probability that a particular program location l is executed by a randomly chosen

input from this input distribution is denoted by . xecution analysis produces estimates

of . This probability estimate is denoted by ^ and is termed an execution estimate; the

method for computing ^ is given in the following algorithm:

1. Set array c nt exec to zeroes, where the size of c nt exec is the number of program

locations.

2. Instrument the program with rite statements at each program location that print

the program location number when the program location is executed. ake sure that

if a program location is repeated more than once for some input, the rite statement

for that program location is only executed once for that input.

. xecute n randomly selected program inputs on the instrumented program, producing

n strings of program location numbers. It is assumed that the program halts for each

of these n inputs, however if it is suspected that this will not be true, even with the

close to being semantically and syntactically correct assumption, then a process must

be inserted to ignore inputs on which execution analysis appears to not be terminating

and hence select new inputs. This process will be performed until the program is

executed to termination on n inputs.

4. For each program location number l in each string, increment the corresponding

c nt exec l . If it happens that some program location is executed on each of

the n inputs, then when Step 4 is completed, c nt exec would equal n.

. ivide each c nt exec l by n yielding an execution estimate ^ .

n execution estimate is a function of the program, the program location, and a particular

input distribution. If the input distribution is changed, then the estimates of execution

10

analysis, as well as the probability estimates from infection analysis and propagation analysis,

will in all likelihood change.

.

fter propagation, infection, and execution analysis has been performed for the entire pro-

gram, there are three sets of probability estimates for each program location l:

1. Set 1: The estimate of the probability that program location l is executed (^);

2. Set 2: The estimates of the probabilities, one estimate for each syntactic mutant

in ; ; ::: at program location l, that given the program location is executed,

the syntactic mutant will adversely a�ect the program state; these are denoted as

(^
; ; ^ ; ; :::); and

. Set : The estimates of the probabilities, one estimate for each live variable in ; ; :::

at program location l, that given that the live variable in the program state following

the program location is perturbed, the output will be changed; these are denoted as

(^
; ; ^ ; ; :::).

These parameters are necessary for the revealing ability formulae. ote that each proba-

bility estimate has an associated con�dence interval, given a particular level of con�dence

and the value of n used in the algorithms. The computational resources available when

propagation, infection, and execution analysis is performed will determine the value of the

ns that are chosen in each algorithm. For example, for 9 con�dence, the con�dence in-

terval is approximately 2 (1 �) n, where is the number of occurrences of event
number of attempts of event

(this is just the sample mean) [?, ?]. lthough there is an associated con�dence interval for

each probability estimate, the con�dence interval is discarded and use only the mean of the

con�dence interval. In other words, although a particular estimate represents a con�dence

interval for some of con�dence, the estimate is simply set to the sample mean, .

This is done since the ns used in the algorithms are expected to be large, i.e., 2 (1 �) n

will likely be insigni�cant.

in i it tric

Section 4 presents formulae quantifying (1) the revealing abilities of program locations and

(2) the revealing ability of programs. arameters to these formulae are the probability

estimates produced by propagation, infection, and execution analysis. Recall that reveal-

ing ability is a tool for making predictions|revealing ability uses estimates from previous

11

observed computational behavior to suggest future computational behavior. dditionally,

Section 4.2 describes how a tester might apply the revealing abilities of program locations

as the foundation for a white-box testing tool during module testing.

.

pplying propagation, infection, and execution analysis to a large program (of say more than

100 program locations) produces a voluminous number of probability estimates. lthough

each distinct probability estimate is informative, the number of probability estimates will

likely be overwhelming, so there must be a way to collapse that information into fewer

individual parts. The revealing ability metric does just this; it takes in each probability

estimate for a program location and produces a single revealing ability for the program

location. Revealing ability, whether for a program or program location is in [0,1], and there

are a continuum of revealing abilities in [0,1].

. . r ram cati n e ealin Abilit

To get a feeling for how propagation, infection, and execution estimates are related to whether

faults will be revealed, consider a program location that is infrequently executed given a par-

ticular input distribution. Such a program location could more easily protect a fault from

detection during random testing because the program location is rarely given an oppor-

tunity to a�ect the program states. Further consider a program location that can easily

sustain injected syntactic mutants or injected program state mutants and produce little or

no discernible e�ect in subsequent program states concerning the injection of such semantic

mutants. Small infection and propagation estimates also suggest that this is a program lo-

cation that could more easily protect a fault from detection during random testing. In this

metric, program locations that receive small propagation, infection, and execution estimates

will be duly recognized as having a greater potential for allowing faults to remain undetected

during random testing and will be assigned lower revealing abilities.

represents the revealing ability of program location l. The revealing ability of program

location l is:

(
n

�

n

^
;) (�

^
;) (� ^); (1)

where ; , and are weights associated with the importance of the three sets of es-

timates; n is the number of live variables at program location l; and is the number

of syntactic mutants injected at program location l. alues for the weights are arbitrary,

however 1:0; this keeps revealing abilities in [0,1].

12

For program location l, is a linear combination of the mean of the infection estimates,

the mean of the propagation estimates, and the execution estimate. The weights are provided

in equation ?? to provide exibility when considering the importance of the three techniques.

For instance, if it is felt that the information provided by execution analysis is the most

important information provided by the three techniques in predicting where faults could

remain undetected, then can be �xed at greater than 1 . By introducing weights into

equation ??, the user of the metric can either consider these three sets of estimates as equally

important, when 1 , or consider biasing a particular weight.

ith the revealing ability of each program location available, a tester receives the fol-

lowing bene�ts:

1. here to get the most value from limited testing resources:

In general, high revealing ability program locations require less random testing than

low revealing ability program locations for the same con�dence that the program lo-

cation is not protecting a fault from detection [?, ?]. By identifying high revealing

ability program locations, testing resources can be shifted by the tester to the more

troublesome low revealing ability program locations. The revealing abilities of pro-

gram locations can be used as a white-box testing tool for where to emphasize testing

resources. This is discussed in Section 4.2.

2. hich program locations should receive some validation techni ue other than random

testing:

uanti�cation of the metric may reveal an extremely low revealing ability at a partic-

ular program location or a section of program locations, thereby pinpointing program

locations or sections of program locations where unreasonable amounts of random test-

ing under the assumed input distribution are needed. t these program locations, al-

ternate validation techniques such as veri�cation, code review [?], or exhaustive testing

should be considered.

. . r ram e ealin Abilit

The revealing ability of a program is derived from the individual program locations' s that

comprise it. The revealing ability of a program is denoted by . , for a program

containing program locations, is:

1
� : (2)

ith the revealing ability of a program, a tester receives the following bene�t:

1

1. hether the software or sections of the software should be rewritten:

Revealing ability may be used as a tool for deciding whether safety-critical software

[?] has been su ciently veri�ed. If a section of a safety-critical program contains

many program locations of low revealing ability, then the section should be considered

for rejection, since enormous quantities of random testing will be required to verify

a su cient level of con�dence. In order to avoid rejecting software because of a low

revealing ability, [?, ?, ?] presents preliminary ideas on how modules can be designed

to enable faults to be more easily found during random testing; the technique is based

on the suggested ability of a module to protect faults from detection before the module

is written. This is a static technique that is based on the speci�cation of a module.

The goal of this design technique is to produce modules that either have high revealing

ability or low revealing ability. odules that are assigned a low revealing ability can

possibly be veri�ed if they are minimized syntactically, and those that are assigned a

high revealing ability can be tested with a ri ri knowledge that they are less likely

to protect faults from detection.

. . xam le

The revealing ability metric is now demonstrated on several trivial programs. Consider two

programs that implement function , where () 1000. In these examples, it is assumed

that the initial value for variable x has already been read in. The �rst program, , is:

l x : x

The second program, , is:

x : x

x : x

x : x

lthough is a ridiculous implementation of , it is correct. For , with only one program

location l , and are near 1.0, since

1. The single propagation estimate is 1.0 (there is only one propagation estimate because

there is only one live variable x),

2. The execution estimate is 1.0, and

14

. The infection estimates will be near 1.0 (because l implements a one-to-one function).

n example of a syntactic mutant for program location l that does not have a 1.0 infection

estimate is x : x , assuming 1000 999 is in the input domain of . For , its

revealing ability is also near 1.0, because similar arguments can be made for each program

location (; ; :::;) in that were made for program location l . So and have

approximately the same revealing ability.

Static software metrics that are based on the number of operators or number of lines

of code might consider programs such as as more complex than programs such as ,

which in terms of readability or debugging is true. owever if the ability to measure the

resolve of a program to reveal faults is the metric's objective, the metric should incorporate

some notion of the ability of the program's locations to be executed, create program state

errors, and propagate program state errors to the output. hen these criteria are used

for determining testing complexity, it is found that and are equally complex. This

more semantic view of software is the intuition behind the revealing ability metric, and as

this example shows, greater amounts of syntax does not necessarily mean greater semantic

testing complexity. In general, however, complex syntax does suggest greater syntactic

testing complexity. Revealing ability just provides an additional viewpoint from which to

discuss testing complexity, i.e., a semantic viewpoint.

For another example that demonstrates this, consider a function , where () mod 2,

and one obvious implementation, , of :

x : x m d

The propagation estimate and execution estimate for program location are both 1.0 since

there is only one location, however the infection estimates for this location may be less than

1.0 for certain syntactic mutants. For instance, program location could be replaced with

the syntactic mutants x: x m d or x: x m d , and if the input distribution to is

uniformly distributed over even and odd values of , then less than 100 of the inputs to this

erroneous implementation would produce a program state error, which in this case would

also be a program failure. So the revealing ability of would be less than 1.0 if these two

syntactic mutants were used during infection analysis, because the syntactic mutants x:

x m d and x: x m d have infection estimates that are less than 1.0 for uniformly

distributed values of .

These examples show that is believed to more easily protect faults from detection

than and . n important di�erence in these programs is that implements a many-

to-two function, and and implement a one-to-one function. conjecture presented

1

in [?, ?, ?] argues that a program's ability to protect faults from detection during random

testing is partially related to the ratio between the cardinality of the domain to the cardinality

of the range of the function that the program implements. xperience has shown that this

conjecture generally holds for trivial examples such as , , and . hether the conjecture

holds for non-trivial examples is under analysis.

.

The revealing ability of a program location suggests the program location's e�ect on the pro-

gram's computational behavior during testing. The lower the revealing ability of a program

location, the lesser the believed e�ect. ith the revealing abilities of program locations,

those program locations can be isolated that have a lesser suggested e�ect and concentrate

testing e�orts there. If a region of a program contains many program locations with low

revealing abilities, then possibly such a region should be redesigned or rewritten.

white-box testing strategy for determining where to concentrate testing resources in a

program or deciding when to apply other validation techniques can be based on the revealing

abilities of the program locations. If a particular is large, say greater than some constant

, then program location l may not require additional amounts of testing. If a particular

is small, say less than , then possibly program location l should receive additional analysis,

either through additional testing or other validation techniques. (is an arbitrary threshold;

determining how to �nd the best threshold has not yet been investigated.)

Since we rarely would ever test a single program location, a more practical way of using

the s in a white-box testing capacity would be to determine the revealing ability of a

module. That is, apply equation 2 to a module of program locations instead of to a

complete program. If a particular module receives an extremely low revealing ability, then

concentrating validation resources on such a module would be prudent.

onc in r

The paper presents a dynamic metric termed revealing ability|the revealing ability metric

suggests whether the increase in con�dence in the software's correctness produced from

random testing without observing failures can be justi�ed. Revealing ability is a semantic

metric, as opposed to most other metrics that are syntactic. The importance in this work

is not in the proposed metric itself, but rather in exposing the notion of semantic software

testing metrics.

The lower the revealing ability, the greater the suggested di culty that will be incurred

1

from undetected faults during random testing. low revealing ability is not an indictment

against software testing, but instead identi�es a potential limitation of random testing when

the goal of such testing is to reveal faults. The revealing ability metric suggests that testing a

program with high revealing ability can produce extremely high con�dence in the software's

correctness. For program's with low revealing ability, questions about whether program

inputs have the capacity to reveal faults assuming faults were to exist are raised.

ot only can revealing ability be used to judge the e�ectiveness of random testing, but

it can be used as the foundation for a white-box testing tool for determining where testing

resources are most needed. Revealing ability can be used to balance testing in such a manner

as to not over test in high revealing ability regions and not under test in low revealing ability

regions.

lthough revealing ability may always seem bene�cial, it can create problems. It may

happen that a perfectly correct program has an extremely low revealing ability. This situation

might cause strong action to be taken against the program, even to the point of rejecting

the program. Remember that revealing ability and correctness are not directly related;

revealing ability only suggests the likelihood that faults will be revealed during random

testing assuming faults exist. This does not say whether the software is correct. This

unfortunate situation appears to be unremediable, however, I contend that the advantages

to testing provided by revealing ability to most programs outweigh the disadvantages caused

to correct programs with low revealing abilities.

1

